C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Engineering Mathematics - II

Subject Code: 4TE02EMT3		Branch: B.Tech (All)	
Semester: 2	Date: 19/09/2022	Time: 11:00 To 02:00	Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) The series $1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots + \infty$ is (a) convergent (b) divergent (c) finitely oscillating (d) infinitely oscillating **b**) Telescoping series is (a) convergent (b) divergent (c) finitely oscillating (d) None of these c) $\int_{0}^{\pi/2} \sin^{4} x \, dx = \underline{\qquad}.$ (a) $\frac{3\pi}{16}$ (b) $\frac{6\pi}{16}$ (c) $\frac{9\pi}{16}$ (d) $\frac{3\pi}{4}$ d) If equation of the curve is y = f(x), then length of the curve is _____ $(a) s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \qquad (b) s = \int_{x_1}^{x_2} \sqrt{1 + \frac{dy}{dx}} dx$ $(c) s = \int_{x_1}^{x_2} \sqrt{1 - \left(\frac{dy}{dx}\right)^2} dx \qquad (d) \text{None of these}$ e) $\Gamma(n-1) = _$. $(n \ge 2)$ (a) (n-2)! (b) (n-3)! (c) (n-4)! (d) (n-5)!f) $\beta\left(\frac{1}{2},\frac{1}{2}\right) =$ _____. (d) π (b) 1 (*c*) 0 (a) $\sqrt{\pi}$ **g**) For m > o, Gamma Function is (a) convergent (b) divergent (c) finitely oscillating (d) None of these

(14)

h) Area of Region R is _____

(a)
$$\int_{R} x \, dy$$
 (b) $\int_{R} y \, dx$ (c) $\iint_{R} dx \, dy$ (d) $\iint_{R} dx \, dy \, dz$

- i) Tangents to the curve at infinity are called _____.
 (a) Cusp (b) Node (c) Conjugate Point (d) Asymptotes
- **j**) The transformation $x = r \cos \theta$, $y = r \sin \theta$ transform the area element dydx into $|J|drd\theta$ where |J| is equal to (a) r (b) r^2 (c) $r^2 \sin \phi$ (d) $r^2 \cos \phi$
- k) The tangents are real and distinct then the double point is called ______
 (a) Cusp (b) Node (c) Conjugate Point (d) Asymptotes
- **I)** Which of the following is true?

(a)
$$\Gamma(m) = 2 \int_{0}^{\infty} e^{-x^{2}} \cdot x^{2m-1} dx$$
 (b) $B(m,n) = B(n,m)$
(c) $\Gamma\left(m + \frac{1}{2}\right) = \frac{2m-1}{2} \frac{2m-3}{2} \dots \frac{1}{2} \sqrt{\pi}$ (d) All are true

m) Degree of differential Equation
$$\frac{d^2y}{dx^2} = \left(\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + y^2\right)^{\frac{1}{4}}$$
 is ______
(a) 2 (b) 3 (c) 4 (d) 1

- **n**) What is the general solution of xdy + ydx = 0?
 - (a) xy = c (b) x=cy (c) y = cx (d) xyc = 0

Attempt any four questions from Q-2 to Q-8

$\mathbf{Q-2} \qquad \mathbf{Attempt all questions} \tag{14}$

a). Prove that
$$\int_{0}^{1} x^{5} (1-x^{5})^{10} dx = \frac{1}{3} B(2,11).$$
 (05)

b). Evaluate:
$$\int_{0}^{1} x^{m} \left(\log \frac{1}{x} \right)^{n} dx$$
 (05)

c). Show that B(m, n) =
$$\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$$
 (04)

Q-3 Attempt all questions (14)

a). Show that the series $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} + \dots \infty$ converges and (05) find its sum.

b). Examine the series
$$\sum_{n=1}^{\infty} \frac{x^n}{n^p}$$
 for convergence using root test. (05)

c). Find radius of convergene for the series $x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$ (04)

Q-4 Attempt all questions (14)

- (05)
- **a).** Solve: $\frac{dy}{dx} + 2y \tan x = \sin x$ given that y = 0 when $x = \frac{\pi}{3}$. **b).** Solve: $(x^2 + y^2 + 1)dx 2xy dy = 0$. (05)

c). Solve:
$$\frac{dy}{dx} = \cos x \cos y - \sin x \sin y.$$
 (04)

Attempt all questions Q-5

(14)

a). Transform the integral
$$\int_{0}^{4a} \int_{\frac{y^2}{4a}}^{y} \frac{x^2 - y^2}{x^2 + y^2} dx dy$$
 by changing to polar (05)

Co-ordinates and hence evaluate it.

b). Find the area between one arc of the cycloid $x = a(\theta + \sin \theta)$,

$$y = a(1 - \cos \theta)$$
 and its base. (05)

c). Evaluate:
$$\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$$
 (04)

π

Q-6 Attempt all questions

(05)

a). Using reduction formula Evaluate
$$\int_{0}^{0} x \sin^{7} x \cos^{4} x \, dx$$

b). Using reduction formula prove that
$$\int_{0}^{0} x^{m} (1-x)^{n} dx = \frac{m! n!}{(m+n+1)!}$$
 (05)

c). Test the convergence of the integral
$$\int_{0}^{\infty} \frac{\cos x}{1+x^2} dx$$
 (04)

Q-7 Attempt all questions

(14)

(14)

a). A circuit containing a resistance R, an inductance L in series is acted on by periodic electromotive force $E sin \omega t$. If i = 0 at t = 0 show that (07)

$$i(t) = \frac{L}{\sqrt{R^2 + L^2 \omega^2}} \left[\sin(\omega t - \phi) + e^{-\frac{1}{L}} \sin \phi \right], \text{ where } \phi = \tan^{-1} \left(\frac{L \omega}{R} \right)$$

State and prove Legendre's formula. (07)

b). State and prove Legendre's formula.

Q-8 Attempt all questions

a). Find the volume of the solid generated by the revolution of the loop of (05) the curve $x(x^2 + y^2) = a(x^2 - y^2)$ about the x – axis.

b). Test the convergence of the integral
$$\int_{0}^{\infty} \frac{x^2}{\sqrt{x^5 + 1}} dx$$
 (05)

c). Trace the curve
$$y^2 = \frac{x^2(a-x)}{(a+x)}$$
; where $a > 0$. (04)

